Constraint scores for semi-supervised feature selection: A comparative study
نویسندگان
چکیده
منابع مشابه
Constraint scores for semi-supervised feature selection: A comparative study
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملModified Constraint Scores for Semi-Supervised Feature Selection
Semi-supervised constraint scores, which utilize both pairwise constraints and the local property of the unlabeled data to select features, achieve comparable performance to the supervised feature selection methods. The local property is characterized without considering the pairwise constraints and these two conditions are introduced independently. However, the pairwise constraints and the loc...
متن کاملSemi-Supervised Feature Selection with Constraint Sets
In machine learning classification and recognition are crucial tasks. Any object is recognized with the help of features associated with it. Among many features only some leads to classify object correctly. Feature selection is useful technique to detect such specific features. Feature selection is a process of selecting subset of features to reduce number of features (dimensionality reduction)...
متن کاملConstraint Selection for Semi-supervised Topological Clustering
In this paper, we propose to adapt the batch version of selforganizing map (SOM) to background information in clustering task. It deals with constrained clustering with SOM in a deterministic paradigm. In this context we adapt the appropriate topological clustering to pairwise instance level constraints with the study of their informativeness and coherence properties for measuring their utility...
متن کاملForward Semi-supervised Feature Selection
Traditionally, feature selection methods work directly on labeled examples. However, the availability of labeled examples cannot be taken for granted for many real world applications, such as medical diagnosis, forensic science, fraud detection, etc, where labeled examples are hard to find. This practical problem calls the need for “semi-supervised feature selection” to choose the optimal set o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2011
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2010.12.014